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Abstract 

The information obtained from a single-antibody immunoassay can be ambiguous when the identity of the analyte is 
unknown and could be one of a group of compounds all having different affinities for the antibody. If we allow the possibility 
of mixtures of analytes the difficulty of the situation is aggravated. However, additional information can sometimes be 
obtained by assaying with a number of different antibodies. We demonstrate a rationale for identifying and quantifying 

analytes from a group of candidates, and illustrate the application of our method with an example from the class of s-triazine 
herbicides. Using a four-antibody array, correct identification and accurate quantification were usually achieved for single- 
analytes samples in the low ppb range. Mixtures of analytes were recognized as such but were more difficult to classify 
correctly, with some confusion arising between members of subgroups, particularly within the methoxy/methylthio substituted 
triazines. The mathematical perspective is used to suggest directions for improving the experimental performance of 
multianalyte immunoassay. 
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1. Introduction 

In analytical chemistry, the identity of a compound 
is not usually proven directly: rather one attempts to 
disprove it under conditions of increasing rigor. 
When those conditions become sufficiently rigorous 

we then accept the resulting data as proof of identity. 
The problem of proof extends to all aspects of 
analytical chemistry, including immunoassay. Since 
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immunoassays are not commonly coupled to chro- 
matographic systems which might separate the 
compounds prior to analysis, one has the added 

complexity of wanting to being able to determine 
mixtures with detector systems of varying degrees of 
selectivity for analytes. 

The quantitative data obtained from a single 
immunoassay only have a valid interpretation when 

either the antibody used is monospecific for a 
particular analyte or if the sample is known not to 
contain any possible cross-reactants; otherwise, it is 
impossible to tell whether the signal obtained is due 
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to an amount of the analyte under investigation or a 

different amount of some other analyte which also 
has an affinity for the antibody being used. There are 
many ways to address this problem including the use 
of a completely different analytical system for 
validation of the results or the coupling of immuno- 

chemical detection methods with chromatographic 
separation [ 11. One could also work on the develop- 

ment of antibodies which are more specific for the 
analytes of interest using either monoclonal or 

recombinant technology or careful hapten design 
and a collection of polyclonal antibodies. However, 

the use of a library of antibodies to look at the same 
group of analytes in different ways presents an 
alternative solution which offers several advantages. 

In case of s-triazine herbicides, for example, there 
are so many possible commercial compounds that it 
is not economical to make a separate immunoassay 
for each compound. An array of less specific 
antibodies that can recognize overlapping classes of 
materials has the potential to be more efficient than a 

large batch of separate assays, while retaining the 
advantages of speed and low cost over conventional 
systems such as GC-MS. 

A number of authors have examined the possibility 
of using an array of antibodies to enable identification 
and quantification from within a group of similar 

analytes. The general approach is discussed by 
Kauvar [2]. Cheung et al. [3] demonstrate the use 
of some multivariate statistical methods in analyzing 
the responses from several antibodies. Karu et al. [4] 
give an overview and evaluation of various statistical 

approaches. Wortberg et al. [5] describe the con- 
struction and application of an immunoarray in the 
case of s-triazine herbicides. The preceding deal 

chiefly with single-analyte samples. Analysis of 
mixtures of cross-reacting analytes, when the identity 
of each analyte in the mixture is known, has been 
demonstrated by Muldoon et al. [6]. A model for such 
mixture analysis was proposed by Jones et al. [7] and 
implemented successfully for mixtures of two, three 
or four analytes [8]. 

We describe below an assay procedure for samples 
which might contain one or more of a class of cross- 
reacting analytes, combining the work by earlier 
authors on pattern recognition and mixture analysis. 
First, we present a mathematical and statistical 
rationale for our procedure. Then we illustrate its 

application by using a four-antibody assay for eight s- 
triazine herbicides, including mixtures. Our examples 
and illustrations use competitive immunoassays with 

a coating hapten format [8]; the approach, however, is 
general and easily adapted to other formats. 

2. Response paths 

First consider the case of two cross-reacting 
analytes assayed with two different antibodies, with 

dose-response curves as shown in Fig. 1. In the 
absence of experimental error, we would know 
exactly the positions of the calibration curves. Given 
the responses (Yi, Y,) from an unknown sample 
containing one or the other of the analytes, we could 
take each candidate analyte in turn and calculate an 
estimated concentration from each assay. In one case 
the estimates would be consistent and, in the other, 

they would not, provided that the analytes showed 
different patterns of cross-reactivity to the two 

antibodies. Thus we could identify the analyte as 
the one which gave a consistent estimate, and this 
estimate would be the true concentration. Further- 

more, we could add more possible analytes and 
always, provided that the cross-reactivity patterns are 
sufficiently different, correctly identify the unknown 
using only two antibodies. Unfortunately experimen- 
tal variation is unavoidable, so we have to pick the 
analyte which gives the most consistent estimates. In 
this section we consider how this consistency should 
be measured, by taking into account how experi- 

1.2 Antibody 1 
0.8 Antibody 2 

0.0001 0.01 1 x 100 10,000 0.0001 0.01 1 x 100 10,000 

Fig. I. Responses (optical densities) of two cross-reacting analytes 

to two different antibodies. The identity of a single-analyte 

unknown with responses (Y,, Y2) is that which gives a consistent 

concentration estimate X. 
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mental error impinges on the estimated concentra- 
tions. The situation becomes clearer if we represent 
the assay responses in another fashion. 

The two response curves from a single analyte 
(Fig. 1) can be combined into a single response path 
as follows: for a given concentration x of Analyte 1 

we can read off from the curves the responses (Y,, YJ 
and plot them as a single point in two-dimensional 

space (see Fig. 2). By varying x from 0 to 03 we get 
the complete response path, given parametrically by 
the concentration X. This is then repeated for Analyte 
2, as shown in Fig. 2. Note that, here, we are 
assuming common horizontal asymptotes for the two 
curves from each assay (since they will be jointly 

estimated from the same microtiter plate), so the 
response paths begin and end together. Whereas this 
is a reasonable assumption for competitive assays, it 

may not be true in general, so that the response paths 
may not be joined. The overall approach taken here 
will still be valid, although details of the implementa- 
tion will change. 

Now suppose we have the responses (Y, , Y,) from 

an unknown single-analyte sample. In the absence of 
experimental error, this point would have to lie on 
one or other of the response paths, thus identifying 
the analyte and enabling quantification. In practice, 

the point may lie between the two curves, as in Fig. 2; 
intuitively one would pick the curve nearest the 

Antibody 2 

0.8 
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Antibody 1 

Fig. 2. Response paths for two cross-reacting analytes assayed 

with two antibodies. Co-ordinates are the responses (optical 

density) of a given analyte concentration to each antibody. The 

unknown marked “X” would be classified as Analyte 2 or, if the 

distance was too great, a mixture. 

sample point. However, the metric for measuring the 

distance needs to be chosen appropriately using a 
statistical model, so that the likelihood of the various 
possibilities can be evaluated. It may be that the 
sample point is so far from both response paths that 
either single analyte is unlikely; in such cases one 
would suspect a mixture. 

Clearly this method will not be reliable for very 
small or very large concentrations, since here the 
response paths are close together: one would only be 
able to ascertain that one had a very small (or very 

large) concentration of something. Thus, there will be 
a workable range for the assay (as with single- 
antibody assays) within which reasonably reliable 

identification and quantification should be possible. 
This will depend in part on how far apart the two 
response paths are, which in turn depends on how 

different the patterns of cross-reactivity are to the 
antibodies used. 

In practice, we are likely to have more than two 
analytes in a cross-reacting group, and to require 
more than two antibodies. We now develop a 

statistical model for the general case of n antibodies. 

3. The statistical model 

We model the individual dose-response curves for 
single-analyte samples using the four-parameter 
logistic model [9]. We assume further that the 

coefficient of variation of the responses Y from an 
individual assay is constant, so that log Y has a 

constant standard deviation. There are more sophis- 
ticated and flexible ways of incorporating hetero- 
scedasticity [IO], but these further complicate the 
methodology and we have found the log transforma- 

tion to be adequate. Thus our model is 

log Y, = log +t, i= I:...n. 

(1) 

where Y, is the assay response from antibody i, x the 
analyte concentration, A;, B,, C,, D, the model 
parameters and E; an error assumed to have a normal 
distribution with zero mean and standard deviation g,. 
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Here, Ai and Di represent, respectively, the assay sample were indeed Analyte 2, would be less than 
response at zero and infinite analyte concentration, Ci 0.01, and we would probably conclude that it was not 
the 1Csa (the concentration giving 50% inhibition), Analyte 2. If both distances were improbably large, 
and Bi a slope parameter. we could next consider the possibility of a mixture. 

The values of A, B, C, D and IT would, in fact, be 
estimated by assaying a set of standard concentra- 

tions along with the unknowns. We assume here that 
this estimation is precise, so that the parameter values 
are known. It is convenient now to write 

4. Mixture analysis 

log Yi =fi(x) + Ei, (2) 

wherefi(x) is a known function as given in Eq. (1). By 
assumption, log x is normally distributed with mean 
fi(x) and standard deviation gi, so we now find that 

The possibility of a multi-analyte sample can be 

explored using the extended four-parameter logistic 
model of Jones et al. [7]. The response Y, from a 

binary mixture of analytes with concentrations (xi, 
x2) is modeled by 

(3) 
ci 

log Yi = log 

which represents the error distance in terms of 
multiples of its standard deviation, follows a standard 

normal distribution. Since the assays with different 
antibodies can be regarded as statistically indepen- 
dent these variables are independent for each i. 

Statistical theory then suggests ([ll], p.177) that 

+ fi, i = l;..,n, (5) 

where Ai, Bij, Co, Di are the parameters of the 
calibration curve for analytej with antibody i, and Bi* 

is the geometric mean of Bil and Bi2. 

(4) 

i.e. the quantity d2 as defined here should follow a 

known distribution: the chi-square distribution with n 
degrees of freedom. Furthermore, d can be regarded 
as a distance in n-dimensional space. If in Fig. 2, we 

re-scale each axis by taking logs and dividing by the 
estimated cr, then d becomes the ordinary Euclidean 

distance between the sample point and the curve. 
The true value x is, in fact, not-known, so we 

estimate it by the value X which gives the closest 
distance to the curve. This is found analytically by 
minimizing over x the expression for d2 in Eq. (4). 
The resulting minimum distance should approxi- 
mately follow a Xi-i distribution (one degree of 
freedom is lost because of the estimation of x). Thus 

tabulated values of the chi-square distribution can be 
used to decide if the distance from the sample point 
to a given response path is improbably large. For 
example, if the distance from the sample point to 
Analyte 2 in Fig. 2 gave d=7.0, tables (XT) tell us that 
the probability of obtaining such a result, if the 

If we use two antibodies, we solve a pair of non- 
linear simultaneous equations for the estimation of 
(xi, x2); if there are more than two antibodies, we 
choose (xi, x2) to minimize d2 of Eq. (4), with fi(x) 
replaced byfi(xi, x2) as in Eq. (5). As before, if we 
are using the correct pair of analytes for a given 
sample, d2 will follow a chi-squared distribution. 
Since we are now estimating two extra parameters, xl 

and x2, the appropriate distribution will be Xi_*. 
Our proposed analysis, having obtained estimates 

of the curve parameters using standard concentrations 
of all analytes in the group, is to first calculate the 
distance from a sample point to each of the single- 

analyte response paths. If any of these are plausible 
when referred to the appropriate chi-square distribu- 
tion, the corresponding analyte and concentration are 
considered as plausible determinations of the un- 
known sample (there may be more than one plausible 
analyte within the group). If all single analytes give 
implausible answers, we search all possible binary 
combinations until a set of plausible solutions is 

found. 
In practice this may produce several possibilities 

for the composition of the unknown sample, but these 
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will be ranked in order of plausibility by their d2 

value. Strict adherence to the maximum likelihood 
principle ([ 1 I], p.254) would suggest that we accept 
the solution with the smallest d2, but it is important to 
be aware of other close alternatives. It may therefore 
be worthwhile proceeding with the binary mixture 
analysis even if we obtain a satisfactory solution at 
the first stage. One could go a stage further and 
examine possible ternary mixtures, but without a 
large number of discriminating antibodies this is 

likely to produce a confused picture since there may 
be many acceptable combinations of analytes. Further 

refinement of the experimental procedure, particu- 
larly in the careful choice of suitable antibodies, will 
be necessary for the successful analysis of complex 
mixtures. 

5. Examples 

We now illustrate and evaluate this method of 
analysis using single analytes and binary mixtures 

chosen from the class of s-triazine herbicides and 
their metabolites (see Fig. 3). For each unknown 

Cl 

“azines” 

Cl Cl 

NAN NAN 
ANJaN_ _NgEN_ ~N‘NNQAN_ 

H H H H H H 

Atrazine Simazine Cyanazine 

metabolites of “azines” 

27 NnN 2 
NnN 

Hydroxyatrazine Deethylatrazine 

“trynsltons” 

OCH3 

Promebyn Terbubyn Prometon 

Fig. 3. Some of the s-triazines and their metabolites. 

sample there are three decisions to be made: is the 

unknown a single analyte or a mixture, which 
analytes are present, and at what concentrations? 

5.1. Single analyte 

Here, we re-analyze the data given in Wortberg et 
al. [5]. Standard curves were obtained for prometon, 
atrazine, simazine, cyanazine, hydroxyatrazine, pro- 
metryn, terbutryn and deethylatrazine on a single 

microtiter plate, together with fourteen unknown 
samples in duplicate (see Fig. 4). Four such plates 

were treated with four different antibodies: AM7B2.1 
[12], KlF4 [13], #2652 [14] and #4653 1151. This 
was repeated with another set of four plates using 
different unknowns, thus giving a total of 28 

unknown samples to be determined. The unknowns 
were all single analytes at concentrations of 0.75, 1.5 

or 5 ppb, excepting two samples per plate which were 
negative controls. A full description of the assay 
procedure is given in Wortberg et al. [5]. 

In the analysis, we first assume a single analyte and 

calculate the minimum distance to each of the eight 
response paths, using Eq. (4). These distances are 

referred to a xi distribution (e.g. the 95th percentage 
point is 7.81) for assessing their likelihood. For 
example, one sample contained simazine at 5 ppb. 

The results for this sample are shown in Table 1. The 
only acceptable possibility is that the sample contains 
simazine, and the estimated concentration of 4.65 ppb 
turns out to be quite accurate. 

A less successful example is given by the sample 
containing 0.75 ppb terbutryn. The results are shown 

* STANDARDS iNKNOWN% 

Prcxlleton so1 so1 ‘SO2 so2 ‘SO3 IS03 so4 so4 UOI uo2 uo3 so5 

so1 ,SOl so2 so2 so3 so3 so4 so4 UOl uo2 uo3 so5 I 
I --- ~--- 10000 

A,MZl%? 

Slmaztne SO1 SO1 SO2 SO2 SO3 SO3 SO4 SO4 “04 UO5 U06 SO6 

11 zero 
Cya”ar,“e so1 so1 so2 so2 so3 so3 so4 so4 UO4 uo5 UO6 SO6 

OHa,rar,ne SO1 SO, so2 so2 SO3 so3 so4 SO4 uo7 UO8 uo9 u13 
_~~~ 

prometryn so1 so1 so2 so2 so3 so3 so4 so4 uo7 UO8 uo9 VI3 

:- _~ 1_ 

Teibutryn SO1 so1 so2 so2 so3 so3 SO4 so4 UlO “11 “12 u14 

lJEa,,az,“e so1 so1 so2 ‘SO2 $03 so3 so4 so4 VI0 Ull u12 Ul4 
1 --c--c- 

0.5 1 .o 2.0 10.0 pr.‘b 

Fig. 4. Template for the first experiment showing locations of 

standards (Sxx) and unknowns (Uxx). 
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Table 1 Table 3 

Results for a sample containing 5 ppb simazine. d*=squared 

distance from the sample response to the response path of the 

assumed analyte; p=probability of getting d* as large as this 

assuming a x: distribution 

Assumed analyte Cont. (ppb) d2 

Prometon 0.33 173.99 

Atrazine 1.15 10.39 

Simazine 4.65 2.11 

Cyanazine 1.34 15.93 

Ohatrazine 0.00 233.87 

Prometryn 0.50 166.80 

Terbutryn 0.45 166.72 

Deatrazine 0.00 233.80 

P 

<O.OOOl 

0.0155 

0.5500 

0.0012 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

Summary of results from assaying 24 single-analyte samples, 

showing whether the correct single analyte was chosen (based on 

lowest d’), whether the d* statistic was acceptably low (at 5% 

significance level) and whether assumption of a binary mixture 

gave significant improvement. 

Add 2nd No 10 2 1 3 

Analyte Yes - 7 I 

Table 2 

Results for a sample containing 0.75ppb terbutryn. All of the d* 
values seem improbably large, so we would next try a binary 

mixture analysis 

was causing a false positive. Spatial trends can 
sometimes be observed on microplate data [ 161, 
variously ascribed to inhomogeneity of the plate 
material, temperature gradients, misalignment of the 
plate reader and other effects. 

Assumed analyte 

Prometon 

Atrazine 

Simazine 

Cyanazine 

OHatrazine 

Prometryn 

Terbutryn 

Deatrazine 

Cont. (ppb) d* 

0.52 16.99 

0.76 67.79 

3.23 88.82 

0.53 137.96 

0.00 162.17 

0.84 13.93 

0.73 15.97 

1 .I3 155.43 

P 

0.0007 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.0030 

0.0012 

<0.0001 

in Table 2. None of the single-analyte possibilities is 

really acceptable, and the distances for prometon, 
prometryn and terbutryn are similar. (The difficulty of 
distinguishing between these three with this array of 

antibodies was noted by Wortberg et al. [5]). We now 
search through all possible binary combinations, and 

find that the fit can be improved significantly by 
including a small amount of hydroxyatrazine, 
although the resulting distance is still rather large. 
Our conclusion would probably be that the sample 
contains either prometon, prometryn or terbutryn, 
with perhaps a small amount of hydroxyatrazine. The 
estimate for hydroxyatrazine in the mixture analysis 
was 0.05 pbb, a seemingly negligible amount, but the 
antibody here, #4653, was extremely sensitive to 

hydroxyatrazine (ZCSO=O.l ppb), enough to reduce the 
d2 value from 15.97 to 7.64. Close examination of the 
data revealed that a few adjacent samples had the 
same characteristic of wanting to add hydroxyatra- 
zine; apparently, a spatial effect on one of the plates 

A summary of the results for the 24 positive 

samples is given in Table 3, showing whether the 
correct analyte was identified at the first stage, 

whether the distance statistic at this stage was 
acceptably small, and whether this could be improved 

using binary mixture analysis. Out of the 24 samples, 
19 succeeded in identifying the correct analyte at the 

first stage, but in nine of those cases the distance from 
the model, d2, was unacceptably large and in seven of 
those the addition of a second analyte (i.e. a binary 

mixture) gave a significant improvement in fit. Four 
of the five incorrect identifications arose from 
confusion between prometon, prometryne and terbu- 

tryn. The fifth was actually 0.75ppb simazine, and 
the d2 value of 4.19 was acceptable for simazine but a 
better fit was achieved by assuming cyanazine 

(d*=2.60). 

5.2. Binary mixtures 

The goal here was to identify and quantify binary 
mixtures of triazine herbicides out of a pool of eight 
possibile candidates. These herbicides were atrazine, 
simazine, cyanazine, prometryn, prometon, terbutryn 
and the two atrazine metabolites hydroxyatrazine and 

deisopropylatrazine. For this experiment, we used the 
antibodies AM7B2.1, KlF4, #4652 [15] and #2282 

[ 171. The plate template and the general assay 
procedure were as in the single-analyte experiment 
above. Again two sets of plates were used, giving a 
total of 28 unknown samples to be determined. All 

Correct identity Incorrect identity 

Acceptable d2 too high Acceptable d2 too high 
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were binary mixtures of 1 ppb of each of two 

analytes, except for two negative controls and one 
sample of 1 ppb atrazine only. 

Analysis procceeded as above, first assuming a 
single analyte and comparing the d2’s with a x: 
distribution, then, if this assumption proved unten- 
able, assuming a binary mixture and comparing 
with xl. We illustrate here with the results from 
a sample containing 1 ppb simazine and 1 ppb 

prometon. Single-analyte analysis gave the shortest 
distance to any of the response paths as 29.7, which, 

when referred to xi, has a probability less than 
0.00001. Mixture analysis indicates three possible 
binary mixtures (with acceptably small d2) as 
shown in Table 4. The rather high estimate for 
deisopropylatrazine reflects the lower sensitivity to 

this analyte in our chosen array of antibodies. We 
would probably conclude that the unknown contained 
either atrazine and prometon or simazine and 
prometon. We can illustrate the uncertainty in the 
estimated concentrations by calculating d2 over an 

array of values near the estimates and drawing a 
contour plot as in Fig. 5. The use of such plots for 
producing confidence regions for the estimates is 
under investigation. 

A summary of the results of the analysis of the 25 
mixtures is given in Table 5. As noted by Wortberg 

et al. [5], the analytes tend to fall into groups with 
respect to their cross-reactivities: the chloro-s- 
triazines (atrazine, simazine, cyanazine), the meth- 

oxy/methylthio-s-triazines (prometon, prometryn 

and terbutryn) and hydroxymetabolites (hydroxya- 

trazine). The dealkylated chloro-s-triazine (deisopro- 

pylatrazine) was relatively unreactive with all our 
antibodies but tended to behave like the first 
group, and its presence was often masked by the 
other analytes. As the overall results show, the assay 

Table 4 

Results for binary mixture analysis of a sample containing I ppb 

simazine and 1 ppb prometon. Only three assumed mixtures are 

shown; the other 25 combinations gave p-values less than 0.0007. 

Assumed analytes Cont. (ppb) d2 P 

I 2 I 2 

Atrazine Prometon 0.42 0.67 2.05 0.36 

Simazine Prometon 0.67 0.72 3.53 0.17 

Dtatrazine Prometon 12.76 0.72 5.94 0.05 

0.0 0.5 1 .o 1.5 

Prometon ppb 

Fig. 5. Contour plot of log(d*) for a sample containing I ppb 

simazine and lppb prometon, assuming a binary mixture of 

simazine and prometon. 

Table 5 

Summary of results from assaying 25 binary mixtures showing the 

outcome and whether the d2 statistic was acceptably low 

Correct correct Single Incorrect 

mixture group analyte group 

Acceptable 3 7 4 0 

d2 too high 1 8 2 0 

was quite successful at indicating the correct group 
or groups, but less successful at distinguishing 
between possible combinations within groups. Thus, 

for example, a mixture of atrazine and prometryn 
was identified as cyanazine and prometon, or possibly 

cyanazine and terbutryn. A mixture of prometon 

and terbutryn appeared to contain terbutryn only. 
The estimated concentrations using the correct 

identities were reasonably accurate, whether or 
not this was identified as one of the possible 
answers. 

6. Discussion 

We have illustrated a methodology for immunoa- 

nalysis of samples which might contain one or 
more from a group of cross-reacting analytes. One 
obvious application is in cases where a complete 
set of monospecific antibodies for each of the 
analytes does not exist. However, this approach 
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might be useful even when there are monospecific 
antibodies available. If samples could be placed 
into groups using a small number of antibodies 

with significant cross-reactivities, and individual 
members of each group could then be identified 

using a smaller number of more specific antibodies, 
then the resulting assay procedure could generally 
use less antibodies and, hence, be more efficient. We 

could thus have a hierarchical system starting with a 
single screening assay, then a multiple assay for 
positive samples sorting them into groups, and a final 
assay for each group to distinguish between its 
members. 

Our results suggest that the method has potential, 

but we are still far from reliable identification in 
every case. Further difficulties could be expected in 

applying the method to mixtures of more than two 
analytes, or binary mixtures in which one component 
was at a much higher concentration than the other. 

Although some success has already been achieved in 
this area in cases where the number of candidate 

analytes is small [8], the difficulty is compounded 
here by having a large number of possible candidates. 
In the present situation, our particular antibody array 
lacked the power to discriminate between certain 
combinations of analytes and we now consider some 
reasons for this. 

Firstly, the pattern of cross-reactivities has to be 
sufficiently different for each analyte. We have noted 

the difficulty in separating prometon, prometryn and 

terbutryn: this occurs because they all had similar 
cross-reactivity patterns across the antibodies. We are 

developing antibodies with more discriminatory 
power which should increase the utility of our 
approach. 

Secondly, ranges of sensitivity were different. For 
example, in the first assay the lowest Kso for 
deethylatrazine was 12 ppb: for hydroxyatrazine it 
was 0.1 ppb. The assay could perhaps be improved by 
decreasing the sensitivity of some of the assays to get 

a similar dynamic range to each analyte. Another and 
possibly preferable solution would be to use a 
dilution series for each unknown. 

Thirdly, the size of experimental error (coefficient 
of variation) can be crucial for multi-analyte analysis. 
If the individual assays are not very precise this 
can seriously degrade the performance of the 
multiple assay. We have noted above a problem 

with spatial effects, which have the potential to give 
rise to very misleading conclusions (see also [16]). 
Precision could be greatly improved if spatial 
variations could be eliminated. Another factor 
contributing to low precision is the limited space 

available on the microtiter plate, so that there has to 
be a small number of standards for the calibration 
curves, and few replicates of each unknown. A 

possible solution is to use separate plates as 
suggested by Jones et al. [18]. Analytical chemists 
can certainly encourage manufacturers to work in 

these directions. As we look into the future of 
immunoassay technology it is likely that we will see 
miniaturized immunoassays which among other 

things will allow more replicates of each assay and 
many assays to be run on a single plate (see [ 191). 
This will certainly increase precision as computer 
averaging systems have done in other branches of 
analytical chemistry such as mass spectrophotometry 

WI. 
Finally, the assumptions made in deriving the 

distribution of the minimum d* statistic were 
probably not valid for our data, particularly our 
assumption that the curve parameters A, B, C, D and 

0 are precisely estimated. This would explain why 
our d* statistic was sometimes too large. The use of 
separate plates, enabling more standards to be used 
for each curve, might improve this; otherwise a more 

complicated statistical argument would be required. 
We are currently investigating all of the above 

possibilities, and hope that some of these approaches 
can be extended more generally to assist in the 
interpretation of results from a variety of methods in 
multi-analyte analysis. 
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